

Increasing the use of local resources while enhancing value and service

Real life cases, factors of success

Cedec, Bruxelles, October 18th 2016

Querfurt: local resource as a leverage to systemic change

Basic City case

atilia

- Old, rather inefficient gas fuelled district heating system, high CO2 emissions
- Expensive energy supply due to disconnection of large customers and heavy fixed costs (~130 eurs/MWh)
- Social and economic problems linked to inefficient energy supply
- Huge wind power production surrounding the city, little relation to its intrinsic energy needs
- Concerns as regards an overall energy strategy that would fit the city development plans

Querfurt: local resource as a leverage to systemic change

• Elaboration, benchmarking and prioritisation of a whole range of potential projects

atilia

- Design, development and financing of a new methanisation-cogeneration system and optimisation of the district heating network
- Identification of new heat offtake potential from large, unconnected potential customers; identification of new customers, support to the constitution of the agricultural JV (waste providers)
- Contract negotiation with waste providers and heat off-takers, procurement, construction and operation of the new methanisation and cogeneration plants

✓ Return on equity for the investing municipal entity > 25%
✓ 30% decrease of the district heating heat bills compared to basic plan
✓ 40% decrease of CO2 emissions form the district heating system

Benchmarking each local resource project against alternatives, within a clear city/regional strategy

Page 4

- Opening the scope : starting with in-depth needs forecast
- Thoroughly comparing options : avoid one sided enthusiasm
- Think systemic : link new devices to operational optimisation from the beginning
- Focus on implementation and capacity building in local companies and systems
- Think gradually: a project is a dynamic step in a long system history

atilia

Paris Saclay: local resource as a cornerstone to innovation and new smart DHC grids

60 000 ÉTUDIANTS

25 000 au niveau Master

25,000 Masters students

5 700 au niveau Doctorat

5.700 Doctoral students

10 500 CHERCHEURS ET

AND RESEARCH PROFESSORS

10.500 RESEARCHERS

ENSEIGNANTS-CHERCHEURS

60,000 STUDENTS

- Paris Saclay, a project of cluster of excellence gathering :
 - The top French engineering and business schools
 - state-of-the-art research laboratories
 - and many private companies

- Objective
 - to build a world renowned center of scientific research
 - A center of innovation and economic development
- PARIS-SACLAY constitutes a major scientific, economic and territorial development project

LES FONDATEURS DE L'UNIVERSITÉ PARIS-SACLAY FOUNDING MEMBERS OF UNIVERSITÉ

POUNDING MEMBERS OF UNIVERSIT

- AgroParisTech
- CEA
- ÇNRS
- École Centrale Paris
- ENS Cachan
- École Polytechnique
- ENSAE ParisTech
- ENSTA ParisTech
- HEC Paris
- IHES
- INRA
- INRIA
- Institut Mines-Télécom (Télécom ParisTech, Télécom SudParis)
- IOGS
- ONERA
- Supélec
- Systematic
- Synchrotron Soleil
- Université Paris-Sud
- Université de Versailles-
- Saint-Quentin-en-Yvelines

stilia

Paris Saclay : the urban development project

Key figures

- Paris Saclay : an urban development project
 - 1 740 000 m² to be build between 2015 and 2028 with associated infrastructure
 - 550 000 m² education and research institutions
 - 560 000 m² of business
 - 380 000 m² family housings
 - 168 000 m² student housings
 - 86 000 m² of shopping facilities, public equipment etc..
 - Total invest
 - 1,5 billions € for real estate projects
 - 1 billion € devoted to laboratories, scientific facilities and collaborative institutes

The Smart Heating and Cooling network of Paris Saclay

The Smart Heating and Cooling network project

Key figures and advantages

Network key figures :

atilia

- Investment : 50 millions €uros
- 10 km network
- Two geothermal drills 700 m depth
- 1 200 000 m² connected to the network within 2021

- Main advantages
 - Low carbon emission (< 100g CO2 / kWh) and > 60% Renewable energy based on local resource (geothermal)
 - Possible energy exchange at low temperature (30°C)
 - Industrial or research center processes (Synchrotron, CEA)
 - Data centers
 - Possible balance of heating needs and cooling needs between buildings (residential <-> offices <-> educational facilities)
 - Competitive price compare to natural gas price
 - Possible electrical and heat demand response and real time optimization

...

2 1 0 0

Logements

étudiants

2 400

Logements

familiaux

Géothermie Electricité Gaz

520 000 m² Enseignement supérieur, recherche, développement économique et équipements publics

Mix énergétique

36%

Lessons learnt and KFS (2/2): Saclay

- Measuring value full scope, long term
 - Pricing externalities

atilia

- Comparing comparables (difficult with standalone solutions: performance gap; systemic hidden costs)
- Pricing stability and instability
- Working harder on needs opens new optimisation fields
- Managing uncertainty over time matters in new projects : finding fair risk sharing agreements with cities and developers when the break-even point of a project depends on city development, and yet unclear building patterns
- Having the right tools to impose a solution, once it is thoroughly justified: long term, community value for money comes first
- Finding pragmatic, smart compromises and combinations between autonomous solutions and collective ones.

